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It is shown that generalized similarity laws which interrelate the aerodynamic 
characteristics (lift and drag coefficients) of a body can be established for the 
general case of nonaffine-similar bodies to which conditions of the localizabi- 

lity law apply, i.e. when the momentum stream at the body surface depends on 

local properties of the latter (Newtonian hypersonic gas flow, rarified gas flow, 
effect of light, etc. ). 

Methods are derived for the construction of complementary bodies and exam- 
ples of application of the proposed similarity laws are given. These laws are 
weI1 known and widely applied in practical problems of flow of perfect gas 
around bodies at various velocities. They make it possible to determine from 
known aerodynamic characteristics of a given body its characteristics at various 
Mach numbers and, in some cases, to determine the lift and drag coefficients of 

affine-similar bodies [l, 21. 
Various theories, in the main based on assumptions that the momentunl stream 

at the body surface primarily depends on the local properties of the latter and 
on the local angle between the normal to the surface and the direction of flight 

velocity (the so-called “localizabi~~” law), are successfully used in many areas 
of flight aerodynamics and dynamics. Specific universal relationships between 

aerodynamic forces and moments are inherent to flows in conditions of the loca- 

lizability law [3]. 
It is shown that conditions of the localizability law make it possible to estab- 

lish generalized similarity laws which interrelate aerodynamic characteristics 

of bodies, including nonaffine-similar bodies. A particular case of these laws 
for Newtonian hypersonic gas flow was considered in [4] on a number of additi- 
onal assumptions. 

1. Bitotement of problem, Let us consider the flow past a plane profile in 
conditions of the localizability law. The profile is assumed to be bounded from above 
by a plane and to be at zero angle of attack (Fig. 1). Any biconvex profile may, evident- 
ly, be considered as consisting of two profiles one of which is bounded by a plane from 
above and the other from below. 

When assumptions of the localizability law apply, the lift and drag coefficients are 

usually expressed by formulas 

where 0 is the angle between the tangent to the profile at a given point and the direc- 
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tion of the freestream, A i and Bi are constants which define the profile and the free- 
stream, and J. is a characteristic dimension. Integration is carried out from the forward 
stagnation point to the boundary of the “illuminated”, i. e. facing the stream, surface of 
the profile. If the local coefficient of the force acting on the body can be presented in 

the form 
e/ = w (0) n + St (6) v, $2 (6) = B, sin 8, 

w (0) = A ,, -I- AI sin 8 -j- (A, -B,) x sin2 0 

formula (1.1) can be written as 

(1.2) 

cy = -+ 
“ft 
I w(e)dx, C, = $ 

“.f s l@(Q) + &I tg e & (1.3) 

0 0 

Sometimes it is more convenient to write (1.3) in the form 

(1.4) 

“! 
Yf I=+ !I tgedz, f,(e, A~, By) = 0(e) tge 

0 

Formulas (1.3) cover the most interesting cases of hypersonic gas flow analyzed on 
assumption of Newton’s theory (A, = Al = RI = 0) in the classical (Aa = 2) or 

the modified form (Aa = Cpa for blunt and Aa= 

0 ;ii 7;, i; cpr / (vn); for pointed bodies [2] ) where subscript 

~ 

zero denotes parameters at the leading edge); the 
free-molecule flows of rarified gas with diffusion- 

mirror reflection (A, = 2 (2 - (T) and B, = 
2134, hypersonic (A a = A I = 0) or in theschrel- 

Yf 

i- 

lo ap~o~mation [3, 53 (A0 = (2 - a) s,-*, 
Al = CT (3tT,T,-1)‘:2S,-f, where o and or are 

Y Fig. 1 the coefficients of normal and tangential reflec- 

tions, respectively, T, and T, are the tempera- 

tures of the body and of the freestream, respectively, 8, = n (2RT,)-‘8’? and R is 
the gas constant) ; the effect of a stream of light on the body (A, = 0, B, = 1 -. 

e (1 - B), A, = 2/, [1 - e(l - A)T, Aa = 1 f e (1 - A), where e, A and 
I3 are the coefficients of reflectivity, and of normal and tangential momentum, respec- 

tively). 

A wide class of profiles can be derived from the reference profile by certain transfor- 
mations (generally nonaffine), whose aerodynamic characteristics can be determined 

from those of the reference profile using the similarity laws which are formulated below. 

2. Complementary profiles. Let the shape of the reference profile be defi- 
ned by equation 

$0) zzz cp (&J)) (2.1) 

cp > 0, cp’ > 0 for x(O) E (0, am), fp (0) = 0 

where cp is a reasonably smooth function. 
We introduce parameter E defined by the relationship 
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&u 

E = ( cf) [ 11 (t)] dt = F (So)), u (t) = arc tg cp’ (t) (2.2) 
0 

where @ is some reasonably smooth function which in the interval ((I,&) is nonnegaa 
tive. We can now represent Eq. (2.1) in the parametric form 

s(O) = F-1 (Q, $0) = Cp [F-1 (Ql 

Let us construct the complementary profile defined by equations 

where g(l) and &) are determined by relationships 

!P (C’, ._ tg I$’ (P), 
T’(1) (E, j 

(2.3) 

where Y is a certain 

!/ ‘(0) (F) . 82: . dy 
p = arc tg d 

Xc’(O) (E) ’ 
x=,E, !l=-q- 

function, 
For any arbitrary 5 the angles of inclination of tangents @(a) (g) and t)(l) (Q at cor- 

responding points of the reference and the complementary profiles are obviously related 
by the equation 

Q(’ ) =- y (e(o)) (2.4) 

The substitution of ~(0) defined by formula (2.2) for parameter g in (2.3) yields for the 

complementary profile equations of the form 

x(O) &N 
’ z(t) =ZZ 

\ ; Q O+% $1) = 
s 

Q (u) tg udt G-5) 

Q (z) ,” @ (z) / CD [‘3’” (z)] 

0 

(2.6) 

Thus functions Q, and Y transform the reference profile into a complementary one. 
The lift and drag of the reference (superscript zero) and the complementary (super- 

script unity) profiles are defined (within the scope of the localizability law the pattern 
of flow of these can be different) by 

(2.7) 

It is obvious that 
El 

i = ($1 (2.8) 

Let us assume that there exists some set of constants CZ,(~~ and uk(‘) in which not all 
of these are zeros and such that the identity 
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ALTO) (0) + ~~)~~) (0) -j- ap 1 
tg 0 + ,y + Q (0) ~~~)~~l) pr (Q)] _t- (2.9) 

&) -j- @f~‘[‘P (O)] -j- &‘tg [Y(O)]) zz 0 

is satisfied. Then, integrating (2 9) with respect to g from zero to E, with allowance 

for (1.1) and (2.6) - (2. 8), we obtain 

which defines the relation between the lift and drag coefficients of the reference and 

the complementary profiles. Formula (2.10) is evidently independent of the shape of 
the reference profile. Since several linearly-independent sets of CL,(~) are possible, 

consequently several relationships of the form (2.10) are, also, possible. 
The transformation (of the reference profile) is thus determined by functions Yr and 

Q of which the latter is not arbitrary, since it must be such that formula (2.6) is satis- 

fied. 

If a,, satisfies (2.6), the latter will be also satisfied by function @ (0) = @,R 

W (O), 01, where R ( zb, 27) is a symmetric function (R (~5, V) = R (u, u)). 
Hence, there exists an infinite set of functions which satisfy (2,6), if the existence of at 
least one function satisfying (2.6) can be proved. This implies that for one and the same 

profile transformation parameter E may be chosen in various forms. 

Some further useful properties of the described ~ansformation should be mentioned. 

Thus, if for function Qi we find such @‘i ((I), i = 1. 2 that formula (2.6) is satisfied, 
the corresponding function (9 = CD,@, can be found also for Q =- QIQz and for 

Q = Q1” function CD = @rn. 
The use of the localizability law is of particular interest in the case of convex pro- 

files. Let us, therefore, establish the conditions under which the transformation does not 

alter the direction of the profile convexity. Since 

d2,,(o) - = cp” (r(O)) 
,jr(0)* 

*= Y’ 0) cp n (@)) 
dd’f Q (r) ff + tp’” (s”‘)] cds2 ‘Y (7) ’ 

y = u (29) = arc tg cp’ (do’) 

then, evidently, if cp” # 0 and Y’ (O)>O , the transformation does not affect the direc- 

tion of convexity, while for Y’ (0) < 0 it changes to the opposite direction. 

Note that transformation of the reference profile may be repeated several times for 

various Q and Y. Transformations which convert convex-to-~ncave profile can alSO 

be used, since an even number of such transformations successively carried out always 

convert convex-to-convex profile. 

8. Let us consider the transformation of the form 

&I Z or&V + @&), y”) =r tfr# -f- ‘JJ,?,(O) (3.X) 

by which the complemental profile is obtained from the reference one by stretching 

the latter along its axes and turning about the coordinate origin, Let us examine the 
conditions necessary for the existence of such transformation. Using (2.4), from (3. I) 
we obtain 



816 A.I.Bunlmovlch and A.V.Dubinskll 

1 [Q (u) - al - a2 tg uj dt = 0 

X(0 

; (Q(U)tg[~(u)]-bl--bztgU)dt=O 
0 

Since (3.2) must be satisfied for any ~(0) and u (t), the equalities 

(3.2) 

are valid. 
Condition (2.8) must be satisfied in addition to conditions (3.3). In this case the for- 

mer reduces to the requirement of existence of such function @ that 

al + a2.z = li (z) / R (::I:: ), z=tgu, R(z)=cD(arctgz) (3.4) 

To establish the existence of the corresponding transformation it is, thus, sufficient to 
prove that for certain a,, us, b, and b, there exists a function R (z) which satisfies 
condition (3.4). 

As an example, let us consider the existence of transformation 

$1) = alz(“), p = b2y(0), al > 0, b, > 0 

Condition (3.4) becomes 

ai = R (z) / R (-& z j 

It can be shown that the transformation is feasible for any values of parameters al, and 

b,, except ai = b, =/= 1 . The corresponding expressions for function R (z) are as follows: 

R (z) - 1 whena, = 1; R (z) = zC,where c = (log,, b, - 1)-l when a1 # 1. 

4. Bxrmplea of application of the proposed method, Let us specify 
functions Y and Q as follows: 

‘I! (6) = ‘/#, Q (6) = 4cos2 ‘/# (4.1) 

This choice of Q (0) is justified, since formula (2.6) is satisfied if we set @ (6) = sin” 8. 

Transformation (4.1) does not alter the direction of convexity becauseY’ (6) = i/2 > 0. 
Let the reference and the complementary profiles be subjected to either a Newtonian 

hypersonic stream or a free molecule stream of rarefied gas. The pattern of flow around 
these profiles may differ. In this case 

$) (e, Ai, Bi) = (A:) - By)) sin2 8, fci) (0 A. B ) z f’i’ tg @ 2 , 2, i 
1 ’ 

j .T 0 1 

and formula (2.9) becomes 

( ,4f) - BF)) (al co) + Q) tg 0) sin20 $ af)tge -+-a4 to) _I 4 cos’3 I/? e x 
(4.2) 

{(,4(i) _ ~‘1)) ~~(1) A_ a(l)tg iI0 9) sin2 I/2 9 -)- a!) igl/.J e + 0:)) ~0 
2 2 1 2 ,- 

After the introduction of the new variable z = tg i/,6 and some elementary transfor- 
mations, we rewrite (4.2) in the form of conditions for the polynomial in z to be 
zero. Equating the coefficients of the polynomial to zero, for the determination of ai”) 
we obtain a system of linear equations which has two linearly-independent solutions 
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In conformity with equality (2.10) these solutions make it possible to establish the fol- 

lowing relationships: 
(4.3) 

Solving Eqs.(4.3) for the lifi and drag coefficients of the complementary profile we 

obtain 
C(1) zzz ‘4 h(O) (0) 

h(')Cu , A = 

‘J(1) _ BP) 
2 

u A(O) _ &O, (4.4) 
2 1 

&) = L.. 
z 1 h(l) . 

~~(O)&O)__ ‘&$$~ _L. 
3 2 (3BF) - At’) I 

If the reference profile is subjected to a Newtonian hypersonic stream and the comple- 
mentary profile to a hypersonic free-molecule stream, it is necessary to set in formulas 

(4.4) A,(O) = 2,B,(Of = O,Ail) = 2 (2 - o) and ~,fr) =207. 
using formulas (2.4) and (4. l), we write the equation for the complementary profile 

in the parametric form + 0 

.(I) = 2t + 2 
s 

dt 

o [I -+ cf (tl]“” ’ 
$1) = 2 

s 

qY(t)dt 

o [1 -I- q? (t)]‘? 
, t F ,(O’ (4.5) 

Let us consider some of the reference profile series. 
a) bet the reference profile be an arc of circle of radius r with its center at point 

(r, 0), whose equation is of the form 

#J) = fr2 - (T _ ,92)'/2 (4.6) 

Substituting the expression cp (f) = y (0) (Z(O)) from (4.6) into (4.5). we obtain the equa- 

tion of the complementary profile 

Fig. 2 Fig. 3 
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xif’ = 2 - (1 $_ gy [’ -. (j,jl’)“‘] - arcsin (1 - 1,:)) -i_ l/Z n 

.$’ = 1 (i) 
r x ’ 

+i) ’ 
‘$ 2L- 7 j,(i), i _ 0, 1, ?,li:) Z-L- +-; (2 - z(io:) 

The reference (X-I”) = 1) and the complementary (5 \“) = 3.57). profiles are shown in 

Fig. 2, where they are denoted by 1 and 2, respectively. 
b) The reference profile is defined by the equation 

y(O) = d In (zfoi + l), d>@ 

From the second formula in (4.3) follows that the equation of the complementary pro- 

file is of the form ,<!I) -1 ?/Ii) :zz &i 111 1 -t p-m. 
L Z(1 r 1/l -i- d-)J 

.~-- 
,.(t) r_ 2 (,,:"' j y (,'yo j J)S ; (l? _- b,'.1-_cl") 
I 

The reference (d = 1, y’Of = 1) and the complementary (q(t) = 3.66) profiles,deno- 

ted respectively by 1 and 2, are shown in Fig. 3. 
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